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ABSTRACT

Fat deposition and torpor use in hummingbirds exhibiting dis-
tinct foraging styles should vary. We predicted that dominant
territorial hummingbirds will use torpor less than subordinate
nonterritorial species because unrestricted access to energy by
territory owners allows for fat storage. Entry into torpor was
monitored using open-flow respirometry on hummingbirds al-
lowed to accumulate fat normally during the day. Fat accu-
mulation was measured by solvent fat extraction. Territorial
blue-throated hummingbirds (Lampornis clemenciae) had the
highest fat accumulation and used torpor only 17% of the time.
Fat storage by L. clemenciae averaged 26% of lean dry mass
(LDM) in 1995 and 18% in 1996, similar to that measured for
other nonmigratory birds. Fat storage by magnificent hum-
mingbirds (Eugenes fulgens; trapliner) and black-chinned hum-
mingbirds (Archilochus alexandri; nectar robber) averaged 19%
and 16% of LDM, respectively, and they used torpor frequently
(64% and 92% of the time, respectively). All species initiated
torpor if total body fat dropped below 10% of LDM, indicating
the existence of a torpor threshold. The ability of L. clemenciae
to store enough fat to support nighttime metabolism is likely
an important benefit of territoriality. Likewise, frequent torpor
use by subordinates suggests that natural restrictions to energy
intake can impact their energy budget, necessitating energy
conservation by use of torpor.

* Corresponding author; e-mail: dpowers@georgefox.edu.

Physiological and Biochemical Zoology 76(3):389–397. 2003. � 2003 by The
University of Chicago. All rights reserved. 1522-2152/2003/7603-2014$15.00

Introduction

Hummingbirds are truly species that test the limits of endo-
thermic physiology. Their extremely small size results in met-
abolic demands that are among the highest recorded (Powers
and Nagy 1988; Weathers and Stiles 1989; Powers and Conley
1994). High metabolic rates likely make it difficult for hum-
mingbirds to store energy (King 1972; Hainsworth 1978). In
fact, the allometric prediction of daytime fat storage for a
3–5-g hummingbird is only 0.2 g (Calder 1974, eq. [46]),
roughly equivalent to the amount needed to meet their night-
time metabolic demands if they remained normothermic. It is
clear that efficient management of energy reserves by hum-
mingbirds is crucial to their survival.

A hummingbird’s most important safeguard against negative
energy balance is their ability to use torpor. When humming-
birds enter torpor, metabolic rate decreases and body temper-
ature (Tb) drops as much as 20�–30�C. Use of torpor results
in a substantial energy savings by lowering nighttime energy
expenditures (Lasiewski 1963; Krüger et al. 1982; Hiebert 1990).
However, the use of torpor by hummingbirds may have po-
tential costs. When hummingbirds enter torpor, they become
virtually helpless, and it has been suggested that they are most
susceptible to predation during this time (Hainsworth et al.
1977). It is also possible that use of torpor slows down incu-
bation (Calder and Booser 1973), interferes with sleep patterns
(Hiebert 1990), and possibly prolongs molt (Hiebert 1992,
1993). These potential costs suggest strongly that humming-
birds should minimize the amount of time spent in torpor.

Several studies during the past 40 years have attempted to
clarify patterns of torpor use in hummingbirds (e.g., Lasiewski
1963; Wolf and Hainsworth 1972; Krüger et al. 1982; Bech et
al. 1997). However, data from these studies are variable and
difficult to interpret because energy budgets were not consid-
ered. Recent studies have attempted to rectify this problem by
simultaneously tracking changes in body mass with patterns of
torpor use (Carpenter and Hixon 1988; Hiebert 1990, 1991,
1992). One of the more important contributions of these stud-
ies is the observation that the functional significance of torpor
is not confined to immediate energy crises, as suggested by
Hainsworth et al. (1977), but may also play a role in maximizing
the rate of energy storage in preparation for migration and
molt (Carpenter and Hixon 1988; Hiebert 1993). While these
studies provide key insights into the functionality of torpor for
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hummingbirds, they still do not address questions related to
the role torpor plays in balancing a daily energy budget.

In a key study by Hiebert (1992), molting rufous hum-
mingbirds (Selasphorus rufus) were shown to initiate torpor
only after energy reserves (presumably fat) fell below some
critical threshold level. In this study the threshold decreased
throughout the night to minimize the chance of initiating tor-
por, presumably because torpor use would slow down growth
of new feathers. This was the first study to convincingly link
energy management on a daily basis to torpor regulation. It
follows, then, that any factor causing energy stores to drop
below a critical threshold should result in torpor initiation.
This is supported by the fact that captive birds increase torpor
use when food is restricted (Hiebert 1991; Bech et al. 1997).
It is likely that when food is restricted for free-living birds,
torpor will be used more frequently as well. In natural hum-
mingbird communities it is common to have dominant terri-
torial individuals or species that restrict access of subordinates
to food (Ewald and Carpenter 1978; Pimm et al. 1985; Fein-
singer 1986; Ewald and Bransfield 1987; Sandlin 2000b). Thus,
we would hypothesize that subordinate species should use tor-
por more frequently than dominant species. If this hypothesis
is correct, and use of torpor does have the negative conse-
quences described above, then the ability of dominant species
to avoid torpor would be advantageous in these competitive
relationships.

In this study we tested the hypothesis that subordinate species
use torpor more frequently than dominant species in a natural
hummingbird assemblage in southeastern Arizona. The assem-
blage consists of one dominant and two subordinate species,
which have been well studied with regard to their social inter-
actions (Pimm 1978; Pimm et al. 1985; Powers and Conley
1994; Powers and McKee 1994; Sandlin 2000a, 2000b). The
blue-throated hummingbird (Lampornis clemenciae; ca. 8.0 g)
is the largest North American hummingbird and successfully
excludes other hummingbirds from high-quality food resources
(Pimm et al. 1985; Powers and Conley 1994; Powers and McKee
1994; Sandlin 2000b). Because of their dominance over other
hummingbirds, L. clemenciae has a relatively high foraging ef-
ficiency because they are often able to feed alone and unboth-
ered by other birds (Sandlin 2000b). Easy access to their food
source should make it possible for L. clemenciae to store suf-
ficient energy to support their nocturnal fast. Thus, we hy-
pothesize that L. clemenciae should use torpor infrequently. The
black-chinned hummingbird (Archilochus alexandri; ca. 3.0 g)
is a classical subordinate species that makes a living by robbing
nectar from L. clemenciae territories or by foraging in subop-
timal habitat (Pimm et al. 1985; Powers and Conley 1994;
Powers and McKee 1994; Sandlin 2000b). Because their access
to food is restricted by L. clemenciae, making energy storage
more difficult, we hypothesize that A. alexandri should use
torpor more frequently than L. clemenciae. A second subor-
dinate species is the magnificent hummingbird (Eugenes fulgens;

ca. 7.5 g). Although subordinate to L. clemenciae (Pimm et al.
1985; Sandlin 2000b), E. fulgens does not appear to frequently
engage in agonistic interactions (Sandlin 2000b; D. R. Powers,
personal observation). Eugenes fulgens seems to avoid com-
petition with L. clemenciae by foraging as a trapliner where they
travel a regular circuit between widely spaced nectar sources
(Powers 1996). In addition, they may also switch, at least in
part, from nectarivory to arthropod foraging (J. A. Van Hook,
D. R. Powers, E. A. Sandlin, and T. J. McWhorter, unpublished
data). Even though E. fulgens appears to avoid substantial com-
petition with L. clemenciae, we suspect that their foraging
method is not as efficient as territoriality and hypothesize that
they will still need to use torpor more frequently than L.
clemenciae.

While it is difficult to measure torpor use in free-living hum-
mingbirds, in this study we attempted to evaluate the impor-
tance of torpor to birds utilizing different foraging strategies,
and whose energy stores were gained under natural conditions.
Frequency of torpor use was determined in the laboratory for
birds collected at dusk, just before the nocturnal fast, by mea-
suring nighttime metabolic rate at ambient temperatures (Ta)
similar to what they normally experience in the wild. Thus,
birds were not forced to use torpor because of unnatural ther-
moregulatory stress. We measured total body fat in each of the
species to determine whether energy storage patterns differed
between species using the different foraging methods and
whether energy storage pattern was related to frequency of
torpor use. Should it be shown that the subordinate species
use torpor more frequently than L. clemenciae, then insight will
be gained not only into how energy stores impact torpor use
but also into what it means to be a dominant versus subordinate
individual in a hummingbird social system.

Material and Methods

Study Site and Animals

We conducted this study in the Chiricahua Mountains (Cochise
County) of southeastern Arizona (latitude 31�50�N, longitude
109�15�W; 1,700 m altitude) during June and July of 1995 and
1996. During this time of year, seasonal and physical factors
that influence torpor use (e.g., temperature, molt, and migra-
tion; Hiebert 1993) are minimized, increasing the likelihood
that competitive ability is a major factor in energy storage.

The area surrounding the study site is characterized by ri-
parian habitat bordered by oak woodland and a mixed conif-
erous/deciduous forest and is the preferred habitat of the species
used in this study. A more detailed description of the habitat
can be found in Pimm et al. (1985).

Three hummingbird species common to this area were used
in this study: the dominant blue-throated hummingbird (Lam-
pornis clemenciae), whose North American range extends only
into the southeastern portions of Arizona, southwestern New
Mexico, and parts of southern Texas (Williamson 2000); the
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traplining magnificent hummingbird (Eugenes fulgens), whose
range, although more expansive than that of L. clemenciae, is
still restricted to the southern portions of the southwestern
United States (Powers 1996); and the subordinate black-
chinned hummingbird (Archilochus alexandri), which can be
found in most regions of the western United States (Baltosser
and Russell 2000).

Metabolic Trials

For the purpose of this experiment we assumed that a bird
entered torpor when metabolic rate (oxygen consumption)
abruptly fell below rest-phase normothermic levels (Hiebert
1990). We measured O2 consumption ( ) with an open-V̇o2

circuit, positive pressure respirometry system. Body mass was
measured before and after the respirometry trials with a top-
loading electronic balance accurate to 0.01 g (Metler BB240).
Measurements were made continuously throughout the night
on birds held in a metabolism chamber under the Ta conditions
and photoperiods described below. Initially, birds were allowed
to feed on 25% (0.73 M) sucrose solution ad lib. in order to
fill their crop just before beginning a metabolic trial. Previous
studies suggest that hummingbirds will fill their crops before
roosting to store energy for the nocturnal fast (see Powers 1991
for discussion).

Metabolism chambers were constructed from canning jars
with an effective volume of 380 mL for A. alexandri and 800
mL for L. clemenciae and E. fulgens. Ta inside the chamber was
monitored with a Cu-Cn thermocouple and recorded to the
nearest 0.1�C with a Physiotemp Bat-12. Thermocouples were
calibrated against thermometers traceable to the National Bu-
reau of Standards.

We regulated the flow of dry, CO2-free air through the me-
tabolism chamber at 500 mL/min (stpd). Flow rate was reg-
ulated by a Cole-Parmer rotameter (previously calibrated with
a bubble meter; Levy 1964) upstream from the chamber. Bar-
ometric pressure and Ta were recorded in order to correct flow
to stpd. A sample of outlet air was passed through soda lime
and Drierite to remove CO2 and water vapor, respectively, be-
fore going through an Ametek (now Applied Electrochemistry)
S-3A O2 analyzer. We used as an indirect measure of met-V̇o2

abolic rate. Before each run we calibrated the O2 analyzerV̇o2

with dry, CO2-free room air, assuming an O2 concentration of
20.95%. Data were recorded and analyzed using an Apple Power
Macintosh 7200 computer running Warthog Lab Helper and
Lab Analyst software (courtesy of Mark Chappell). Output from
the analyzer was recorded every 10 s, with baseline values being
recorded at the beginning and end of each hour.

Birds were captured, placed in a metabolism chamber, and
housed for the duration of the experiment in a Percival I-35L
environmental chamber set at 25�C. Metabolic rate was mea-
sured for 0.5 h beginning at the top of each hour, with baselines
measured at the beginning and end of the run. When the run

was complete, Ta was lowered 2�C to the next experimental Ta.
Ta reductions of 2�C/h were continued throughout the night.
This rate of Ta reduction closely approximates the nighttime
Ta experienced by free-living birds (D. R. Powers, unpublished
data). We simulated natural cycles of Ta in an effort to make
our laboratory data relevant to wild birds in their natural hab-
itat. Metabolic measurements were terminated when a bird
entered torpor or at the conclusion of the nighttime period if
a bird remained normothermic. At this point, birds were killed
for measurement of total body fat.

Total Body Fat

We measured daytime fat accumulation by doing whole-body
fat extractions on birds captured at dusk before their nocturnal
fast (control group; per year for each species). Fat wasn p 6
extracted from birds used in the metabolic trials to determine
body-fat content of birds at the conclusion of the nocturnal
fast or upon entry into torpor (experimental group). Fat use
during the nocturnal fast was estimated by subtracting the fat
content of experimental birds from the average value of the
control birds.

To extract total body fat, birds were killed and dried to a
constant mass in an oven at 60�C. The difference between the
initial wet mass (WM) and the final dry mass (DM) was con-
sidered the bird’s total body water. To measure lean dry mass
(LDM), the dried body was cut into tiny pieces, placed into a

extraction thimble (Schleicher & Schuell),25 mm # 80 mm
placed back into the oven for 1 h, and then weighed (both
thimble and tissue together) to the nearest 0.001 g on a Metler
College B303 balance. The above weighing procedure was re-
peated until the thimble plus tissue maintained a constant mass
over three consecutive measurements. After weighing, the thim-
ble was placed into a Soxhlet extraction apparatus (125-mL
flask capacity; Ace Glass) containing an ether solvent. Extrac-
tions were run for approximately 24 h, after which the thimble
and its contents were removed from the Soxhlet and air dried.
After air drying, the thimble and contents were placed in the
60�C oven and dried to a constant mass as described above.
The difference between the DM and LDM was considered the
fat mass (FM) of the bird.

Statistical Analysis

Because our study species differed in mass, we evaluated the
impact of body mass on our data using ANCOVA with body
mass as the covariate. It is important to do this because body-
fat data are reported as ratios for the sake of comparison, and
such ratios can be misleading under certain circumstances. For
example, if fat storage rate were a function of body size, then
reporting data in this manner would be inappropriate (Blem
1980).

Between-year differences in means for a single species were
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Figure 1. Proportion of Lampornis clemenciae, Archilochus alexandri,
and Eugenes fulgens that entered torpor during experimental trials in
1995 and 1996. Numbers above bars are sample sizes.

tested using a standard Student t-test. Measurements involving
more than two groups were tested using ANOVA (with Tukey
test for post hoc analysis), or x2 goodness of fit when as-
sumptions for parametric analysis of more than two groups
could not be met. Homogeneity of variance between sample
groups was determined using a Levene’s test for homogeneity.
Seasonal and interspecific differences in torpor use were tested
using contingency tables and x2 analysis.

Results

Lampornis clemenciae used torpor less frequently than Archi-
lochus alexandri and Eugenes fulgens in both 1995 and 1996
(Fig. 1). Between-year differences in torpor use for all three
species were not significantly different. If data from both years
are combined, frequency of torpor use is 17% (two of 12) for
L. clemenciae, 92% (12 of 13) for A. alexandri, and 64% (seven
of 11) for E. fulgens.

Nighttime metabolic profiles and times of entry into torpor
for individuals of all three species are shown in Figure 2. Met-
abolic profiles differed between years and are shown separately.
For L. clemenciae, mean as a function of Ta was the sameV̇o2

in both years, but the variation in was significantly higherV̇o2

in 1996 ( , ). In both years mean was˙F p 13.67 P ! 0.001 Vo1, 90 2

higher than predicted at all Ta’s (Lasiewski and Lasiewski 1967).
Higher than predicted occurring in all species might, atV̇o2

least in part, be due to specific dynamic action resulting from
digestion of crop contents. For A. alexandri, nighttime wasV̇o2

significantly higher in 1995 than in 1996 ( ,F p 6.10 P !1, 5

), while interindividual variation did not change0.001
( , ). In 1995 was higher than pre-˙F p 0.866 P p 0.356 Vo1, 60 2

dicted while in 1996 was similar to predicted values (Las-V̇o2

iewski 1963). It must be noted that because A. alexandri used
torpor frequently, these metabolic profiles are based on rela-
tively few measurements. Thus, the observed differences need
to be interpreted cautiously. Metabolic profiles for E. fulgens

differed markedly between years. In 1995 only one individual
remained normothermic beyond midnight. The of thisV̇o2

individual was consistently higher than predicted (Lasiewski
and Lasiewski 1967). In 1996 individuals initiated torpor later
and had a more variable . No meaningful statistical com-V̇o2

parison of measurements could be made for E. fulgensV̇o2

because data were too few in the latter portion of the mea-
surement period.

ANCOVA showed that neither WM ( ,F p 0.315 P p1, 46

) or LDM ( , ) contributed signif-0.578 F p 0.863 P p 0.3581, 46

icantly to the values of FM measured in this study. Thus, we
did not correct for the effects of body mass in the analyses
below.

Fat storage differed between years only for L. clemenciae (Fig.
3; , ), where FM in control birds was onF p 8.64 P p 0.011, 16

average 27% lower in 1996. This was also the only year L.
clemenciae was observed to initiate torpor (Fig. 1). LDM of L.
clemenciae did not differ between years ( , ).t p 0.37 P p 0.7238

In both years, experimental values of FM were significantly
lower than control values (Fig. 3; , ), in-F p 17.87 P p 0.0011, 16

dicating that fat catabolism contributed to nighttime energy
expenditure. Total daytime fat accumulation in both years was
0.23 g/d (8.9 kJ/d). Data for A. alexandri and E. fulgens did
not differ significantly between years, so 1995 and 1996 mea-
surements have been combined for analysis (Fig. 4). Because
only one control measurement was made for E. fulgens in 1995,
we have combined it with the 1996 control data for analysis.
In both species control data differed significantly from the ex-
perimental (Fig. 4; A. alexandri, , ; E. ful-t p 2.65 P p 0.01618

gens, , ), indicating that fat catabolism con-t p 2.41 P p 0.03312

tributed to nighttime energy expenditure. Total daytime fat
accumulation was 0.18 g/d (7.0 kJ/d) for E. fulgens and 0.03 g/
d (1.2 kJ/d) for A. alexandri. These values are 78% and 13%
of that observed for L. clemenciae, respectively.

Daytime proportional fat mass (control) in L. clemenciae
averaged about 26% of LDM (8% of WM) in 1995 and 18%
of LDM (6% of WM) in 1996. During 1995, L. clemenciae had
a higher proportional fat mass during the day than A. alexandri
(16% LDM, 5% WM) or E. fulgens (19% LDM, 6% WM;

, ), but in 1996, daytime proportional fat2x p 8.62 P p 0.0132

mass was not statistically distinguishable between species
( , ). Proportional fat mass at the conclu-2x p 0.73 P p 0.6952

sion of the torpor trials (experimental) did not vary among
species in either year (1995, , ; 1996,2x p 2.02 P p 0.3642

, ), so experimental birds are lumped for2x p 2.35 P p 0.3092

analysis. When proportional fat mass for all experimental birds
are plotted as a function of time, the slope of the resulting
relationship is indistinguishable from 0 regardless of whether
LDM or WM is used as the dependent variable (Fig. 5). This
suggests a constant torpor threshold similar to model 1 in
Hiebert (1992). The mean FM value for this threshold is

( ) of LDM and for WM10.35% � 3.5% n p 29 3.97% � 1.34%
( ).n p 29
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Figure 3. The ratio of total body fat to wet mass (WM) and lean dry
mass (LDM) in Lampornis clemenciae during 1995 and 1996. Data are
presented as .mean � SD

Figure 2. Hourly metabolic rate for Lampornis clemenciae, Archilochus
alexandri, and Eugenes fulgens during metabolic trials in 1995 (open
circles) and 1996 (solid circles). The line represents the predicted re-
lationship between metabolic rate and temperature (Lasiewski and
Lasiewski 1967 for L. clemenciae and E. fulgens; Lasiewski 1963 for

A. alexandri). The predicted increase in metabolic rate is based on our
simulated nighttime temperature cycles. Arrows ( ,open p 1995

) represent times when individual birds entered torpor.solid p 1996

Discussion

In this study Lampornis clemenciae was the only species not
to use torpor with some regularity (Figs. 1, 2). Lampornis
clemenciae is the dominant species in the system (Pimm et al.
1985; Powers and Conley 1994; Sandlin 2000b) and the only
species with unrestricted access to their energy source. This free
access to food allowed them to store fat during the day that
was in excess of 26% of LDM (8% of WM) in 1995. While fat
storage by L. clemenciae was proportionally higher than that of
the other species in this study, it was substantially less than that
found in male ruby-throated hummingbirds (Archilochus col-
ubris; ca. 3.0 g) during late summer and fall (Norris et al. 1957).
The discrepancy between FM in L. clemenciae and A. colubris
probably reflects premigratory fattening in the latter study,
which may be associated with the deposition of fat stores equiv-
alent to 140% of LDM (Baggott 1986; Carpenter and Hixon
1988; Gudmundsson et al. 1991; Kaiser 1992; Hiebert 1993).
On the other hand, the difference in FM of L. clemenciae be-
tween 1995 and 1996 may be related to differences in the su-
crose solutions we provided (1 M in 1995 vs. 0.5 M in 1996).
The ability of hummingbirds to assimilate energy is constrained
by the amount of water in nectar (McWhorter and Martı́nez
del Rio 1999), and the interannual difference in FM likely re-
flects this constraint. This argument is strengthened by the
observation that the reduction in feeder energy content is sim-
ilar to the observed reduction in FM.

In contrast, Archilochus alexandri relied on regular torpor to
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Figure 4. The ratio of total body fat to wet mass (WM) and lean dry
mass (LDM) in Archilochus alexandri and Eugenes fulgens. Bars rep-
resent combined data from 1995 and 1996.

Figure 5. Ratio of total body fat to lean dry mass (LDM) and wet
mass (WM) for all species at the time of entry into torpor or at the
conclusion of the nocturnal fast if they remained normothermic. The
slope of the regression lines is not significantly different from 0, in-
dicating that the birds will not allow their total body fat to fall below
this minimum level (torpor threshold).

balance their energy budget (Figs. 1, 2). Unlike L. clemenciae,
only a small amount of body fat was catabolized before torpor
initiation (Table 1; Fig. 4). On average, torpor was initiated
when total body fat reached about 10% of LDM (4% of WM),
suggesting that this level of fat storage is a threshold. In fact,
this threshold seemed to be applicable for all species in this
study (Fig. 5). For birds that remained normothermic, pro-
portional fat mass was about 10% of LDM at the end of the
nocturnal fast. These data are consistent with the notion of an
energy-storage threshold for torpor initiation proposed by Hie-
bert (1992). Our data differ from those of Selasphorus rufus
reported by Hiebert in that the threshold for our birds is not
time dependent. Rather, the threshold appears constant
throughout the night, conforming to Hiebert’s (1992) model
1. This difference in threshold management might be due to
the fact that birds in our study did not have the concern of
delaying molt, as was the case with S. rufus. It should be noted
that we have few measurements between 4:00 and 5:00 a.m.
The two values we do have during this period are lower, so it
is possible that more data during this interval could show a
time-related change in the torpor threshold.

The fat-storage threshold for torpor initiation in humming-
birds supports the existence of a cellular signaling mechanism
that senses changes in body lipid content and initiates com-
pensatory physiological changes when lipid levels fall below
threshold. The idea of a “lipostat” has been proposed for mam-
mals and supported by evidence that the peptide hormone
leptin, secreted primarily by white adipose tissue, might be
involved in the regulation of fat mass in hibernating mammals
(Boyer and Barnes 1999). It is possible that leptin receptors are
a component of this proposed lipostat. Whether or not such

mechanisms function in birds is unclear and will require further
studies.

Eugenes fulgens did use torpor but less frequently than A.
alexandri (Figs. 1, 4). Even though E. fulgens was subordinate
to L. clemenciae, they rarely engaged in direct competitive in-
teractions (Sandlin 2000b). This is likely because E. fulgens
foraged as a trapliner (Powers 1996) and seemed to be able to
substitute arthropods for nectar as an energy source rather than
compete directly with L. clemenciae (J. A. Van Hook, D. R.
Powers, E. A. Sandlin, and T. J. McWhorter, unpublished data).
Because E. fulgens acquires a substantial portion of their energy
outside of areas defended by L. clemenciae, the high variability
in torpor use might reflect variability in an individual’s ability
to locate sufficient alternative energy resources or perhaps daily
variation in the availability or quality of alternative resources.

If we assume that hummingbirds avoid torpor whenever pos-
sible, then frequency of torpor use can be used to address
questions about the energetic advantage of various foraging
strategies. Several studies have shown that territory defense by
nectar-feeding birds is related to energy density within the de-
fended area (see, e.g., Gill and Wolf 1975; Gass et al. 1976;
Kodric-Brown and Brown 1978) and that territoriality is aban-
doned when the energy value of the territory falls below that
required to sustain the territory owner (Gill and Wolf 1975;
Kodric-Brown and Brown 1978). Likewise, several studies have
clearly shown that the foraging dynamics of this hummingbird
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Table 1: Mean � SD of total body (wet) mass (WM), lean dry mass (LDM), and fat mass (FM) for each of the
study species

Species

Control Experimental

n WM (g) LDM (g) FM (g) n WM (g) LDM (g) FM (g)

Lampornis clemenciae:
1995 5 7.99 � .11 2.46 � .22 .65 � .14 5 8.16 � .19 2.76 � .07 .42 � .15
1996 5 8.15 � .19 2.74 � .61 .48 � .16 5 8.06 � .45 3.01 � .28 .25 � .05

Archilochus alexandri 10 2.97 � .21 .96 � .10 .15 � .03 10 3.06 � .29 1.06 � .26 .12 � .03
Eugenes fulgens 7 8.00 � .48 2.52 � 1.21 .49 � .16 9 7.59 � .42 2.59 � .29 .31 � .11

Note. Because values for L. clemenciae differed between years, 1995 and 1996 data are presented separately.

guild are energy dependent (Pimm et al. 1985; Powers and
Conley 1994; Powers and McKee 1994; Sandlin 2000b). In this
study, L. clemenciae was the only species to consistently exhibit
positive energy influx adequate to support nighttime nor-
mothermy. This suggests that territorial foraging by L. clemen-
ciae resulted in a higher net energy gain than for either A.
alexandri or E. fulgens (Gill 1978), particularly in 1995. This
advantage to territorial L. clemenciae males is potentially enor-
mous assuming the risks associated with torpor use, and the
danger of starvation is truly minimized, as suggested by our
laboratory results. Thus, the amount of energy required to sus-
tain a successful territorial male L. clemenciae might also include
that needed to accommodate daytime fat accumulation and
normothermic nighttime metabolism. This idea is indirectly
supported by Powers and Conley (1994), who measured field
metabolic rate (FMR) in L. clemenciae and A. alexandri using
doubly labeled water. They showed that FMRs of these species
were 87% and 17% higher than predicted, respectively. Even
though relative FMR was substantially higher in L. clemenciae
(likely due to agonistic behavior), they generally gained body
mass during the measurement period, whereas A. alexandri
generally lost body mass. This indicates a commitment to en-
ergy storage in spite of the high energy demands of territoriality.

While the subordinate species seemed to remain in energy
balance, they engaged in less fat deposition (Table 1; Fig. 4).
It is unclear whether the lower levels of fat storage were due
to reduced energy intake or higher foraging costs (or both?).
Colwell (1973) suggested that when food resources are highly
predictable and in good supply that opportunistic feeders can
meet their energy needs. The feeders defended by L. clemenciae
certainly fit this criterion. The ideas of Colwell are supported
by the fact that when nectar availability is essentially unlimited,
A. alexandri are excluded from L. clemenciae territories much
less frequently than when nectar availability is restricted (Pow-
ers and Conley 1994). It is also possible that the subordinate
species are more actively managing their energy budgets to
assure energy balance. Tiebout (1991) suggested that when en-
ergy availability to the trapline foraging Chlorostilbon canivetii
was constrained that they increased the energy available for
flight (to forage) by reducing perch-related activities such as

preening, calling, and “wing buzzing” (beating their wings while
remaining perched). It is unclear if subordinate species in this
study make such metabolic adjustments, but birds do exhibit
behaviors that are presumably designed to minimize the num-
ber of agonistic encounters with L. clemenciae. Archilochus al-
exandri, for example, will perch out of sight of an L. clemenciae
male and feed only after the male has left on a chase (D. Powers,
personal observation). When A. alexandri get such an oppor-
tunity, their feeding bout will last longer than is typical for the
territory owner (Tiebout 1993; Sandlin 2000b; D. Powers, per-
sonal observation).

Active management of energy budgets by the subordinate
species does not eliminate the energetic asymmetry that exists
with the territorial L. clemenciae. Both A. alexandri and E. ful-
gens required frequent use of torpor to prevent energy stores
from falling below acceptable levels. The energetic asymmetry
was probably greatest between L. clemenciae and A. alexandri
since A. alexandri need to use torpor nearly 100% of the time.
The metabolic demands of their small size coupled with their
reliance on an energy resource controlled by L. clemenciae prob-
ably made it extremely difficult for A. alexandri to balance their
energy budget without using torpor. The relative contribution
of body size and competition to the torpor use pattern exhibited
by A. alexandri is unclear. However, differences in torpor use
by L. clemenciae and E. fulgens, which are similar in size, suggest
that restricted energy availability to a subordinate species can
alter the frequency with which torpor is employed.

It is important to note that the patterns of torpor use re-
ported in this study might have been impacted by stresses as-
sociated with laboratory measurements. Geiser et al. (2000)
suggest that torpor bouts by daily heterotherms in the field are
often longer and deeper (i.e., achieve a lower Tb) than in the
laboratory. Extended periods of captivity can lead to physio-
logical and behavioral changes that make animals different from
free-living individuals. Carlstead (1996) suggests that this is at
least in part due to a captive animal’s inability to alter external
stimulations (e.g., behavioral thermoregulation, initiation of
foraging in response to hunger, etc.). The resulting behavioral
and physiological changes that occur due to captivity are dif-
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ficult to predict because they can vary between species (Geiser
et al. 2000; Navas and Gomes 2001).

Even though conditioning effects of extended captivity were
omitted from this study, stress resulting from capture and han-
dling undoubtedly occurred (Wingfield and Ramenofsky 1999).
Capture and handling stress is unavoidable in this type of study,
and its effects are not reliably predictable (Cockrem and Silverin
2002; Romero and Romero 2002). Thus, potential stress effects
should be kept in mind as these data are applied to future field
studies.

In this study we have gained several insights into how free-
living hummingbirds manage torpor use. We have shown that
L. clemenciae was able to store more fat and use torpor less
frequently than either E. fulgens or A. alexandri. This supports
our hypothesis that unrestricted access to food by a territorial
species will allow them to more regularly support normothermy
during their nocturnal fast. Limiting torpor use might be ad-
vantageous to L. clemenciae because the associated conse-
quences are avoided. Likewise, our hypothesis that E. fulgenes
and A. alexandri, subordinate species, would use torpor more
frequently because their access to food (energy) was restricted
by L. clemenciae was also supported. Balancing their energy
budget was particularly difficult for A. alexandri because of the
high energy demands associated with their small body size. This
is evidenced by A. alexandri’s inability to store fat and their
use of torpor almost every night. We have also shown that food
quality might impact torpor use, particularly in L. clemenciae,
who only used torpor in 1996, when the energy content of their
feeder solution was cut in half. Lower energy intake, resulting
in lower fat storage, might be evidence for a foraging constraint
(e.g., water elimination rate). The highly variable rate of torpor
use exhibited by E. fulgens might also be the result of variability
in food sources utilized during trapline foraging. Finally, our
data suggest that torpor in all three species is initiated at night
when total body fat falls below a threshold level (about 10%
of LDM) and that the threshold remains constant throughout
the nocturnal fast.
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